

Introduction

A computer program is actually just a series of instructions telling the computer what to

do. A computer language acts as an interpreter. The programmer writes instructions using

the language, and the language tells the computer what to do. Before we get too far, let’s

get familiar with few convention used throughout this tutorial.

Style Meaning

CLS
Capital text in this font is to be typed exactly as it appears --

these are the keywords.

LET varname = expression Text in italics represents values or variables you'll have to enter.

READ varname [, varname,
An ellipsis (...) means you can add as many elements as you wish.

Here, you can put as many values after READ as you wish,
...]

separated by commas.

IF test THEN
A <statements> means one or more lines of code was omitted for

<statements>
clarity's sake.

END IF

Few terms in that table that may be unfamiliar, such as variable. Below is another table, this one

defining some important vocabulary words that are used throughout this tutorial and beyond.

Word Definition

Statement An instruction to do something. These words can be used interchangeably

Command most of the time;

 A word that is part of the QBasic language. When you type a keyword,

Keyword
QBasic will automatically capitalize it for you. Keywords are used to identify
commands and parts of commands. Note that you cannot make a named

 constant or variable with the same name as a QBasic keyword.

String
A bunch of characters. In QBasic, strings have quotation marks around them,

for example, "Kuldeep”.

Number A number. This can be subdivided into Integer Long Integer, Single Floating

By Avinash Ranjan 1
k.s.m. college Aurangabad

QBASIC

 Point and Double Floating

Constant A value (string or number) that cannot change.

 A named "holder" for a string or number. Variables can have a type suffix that

Variable
is added to the end of the name to identify what data it holds (non-suffixed
variables default as Single). Strings are $, Integers are %, Long Integers are

 &, Singles are !, and Doubles are #.

Operator
One of the built-in math operations. They will be described in more detail
later in the tutorial. They range from arithmetic operators (+, -, etc.), relational

 operators (=, >, etc.), and Boolean/binary operators (AND, OR).

Comment
Does absolutely nothing. QBasic ignores comments. With comments, you can

put notes in your program to remind you what this section does.

Block Generic term for a group of lines inside a structure.

Loop Generic term for a group of lines executed a series of times.

Your First Program

Now, its time to write your first QBasic program. This program will display "Hello,

world!" on the screen.

QBasic is a DOS based program. To run it you have to open a DOS box. Click:

a. The Qbasic icon on your windows desktop.

b.A QBasic editor will be opened for you.

c. Enter the following program.

To run this Qbasic program, press Shift-F5 (or choose Run|Start from the Qbasic menu).

' Hello World program

CLS

PRINT "Hello, world!"

END

When you run this, a blank screen will appear and the two words will appear. Observe that

QBasic displayed Press any key to continue. at the bottom of the screen. QBasic does this

when a program ends. Let's understand this simple program by looking at each individual

line to see what's going on.

' Hello World program
This line is a comment. All comments in QBasic begin with an ' (apostrophe) or the keyword

REM followed by a space. So, all this line does is tell us what the heck the program is.

By Avinash Ranjan 2
k.s.m. college Aurangabad

QBASIC

CLS – Clear Screen

This line is a command. If you know a little DOS, you probably already know this. The CLS

command clears the screen. I used this to get rid of everything before we wrote the text.

PRINT "Hello, world!"

This is another command. As you can probably guess, PRINT displays text on the screen
at the current cursor position. Following the PRINT keyword is a literal constant, the text
to display. You can PRINT just about anything.

END

This line, easily enough, ends the program.

REM Command

Syntax: {REM | '} comment
The REM command lets you add a comment to your code. As the syntax definition shows,

you can use an apostrophe (') in place of the word REM. comment can be anything you want

Example: ' let's Learn QBasic, its fun!

CLS Command

Syntax: CLS
The simple CLS command clears everything off of the screen and puts the cursor at the

top left corner of the screen. Example: CLS

PRINT Command

Syntax: PRINT [expression {; | ,} expression {; | ,} ...] [{; | ,}]
The PRINT command is used to put text on the screen at the current cursor position. The

syntax will take some explaining. expression can be any string or number expression.

Examples: PRINT
PRINT " Name", "SSN" PRINT "My name is. . . . "; myname$;

END Command

Syntax: END
The END command quits the program and returns to the QBasic editor. Example: END

By Avinash Ranjan 3
k.s.m. college Aurangabad

QBASIC

Data Types

Every variable used in the program has data type. These variables are the key to making a

useful program: without them, your program will run the same way every time it is run.

But how do you use variables in the first place? A variable is created the first time it is

referenced in your code, such as when you first set a value to it. As stated before, there

are five types of variables. Each one has its own associated suffix to identify its type. The

table below describes in more detail the five data types:

Data Type Suffix Description

String $ String variables are the only variables that hold text

Integer %
Integer variables are 2 bytes long and hold integers (numbers with no

fractional part).

Long Integer & Long Integer variables are 4 bytes long and also hold integers.

Single !
Single-Precision variables are 2 bytes long (usually called Single) can

handle numbers with a decimal point.

Double #
Double-Precision variables are 4 bytes long (usually called Double) can

also handle numbers with a decimal point.

Arithmetic Operators:

Before we go on, let’s look at the first set of operators. These are the arithmetic operators.

You can use them to perform the basic arithmetic functions. You use them by putting the

operator between two numeric expressions: num1 operator num2.

Name Symbol Description

Addition + Adds two numbers together.

Subtraction - Subtracts the second number from the first.

Multiplication * Multiplies two numbers together.

Division / Divides the second number into the first.

Integer Division \
Same as division, but round off the result to the lowest whole
number. In other words, it gives you the answer without the

 fractional (remainder) part. Ex: 5 \ 2 = 2, whereas 5 / 2 = 2.5.

Modulo MOD
Same as division, but returns the remainder found by long division.

Ex: 5 MOD 2 = 2, 10 MOD 4 = 2.

By Avinash Ranjan 4
k.s.m. college Aurangabad

QBASIC

Variables should be assigned a value, to use it in the program. There are two ways to do thi.

LET Command

Syntax: [LET] variable = expression
The LET command assigns a variable a value. variable is the name of any type of

variable. expression is an expression of the same type of variable -- number or string

Examples: mystring$ = "This is a test."
result% = var1% + var2%

INPUT Command

Syntax: INPUT [;] [literalstring$ {; | ,}] var [, var, ...]
INPUT lets the user input the value of a variable or variables. literalstring$ is a literal

string expression that prints a prompt -- Examples:

INPUT "Enter a number between 1 and 10:", guess%
INPUT "What's your name and phone number"; n$, p$

INPUT ; var1!

Condition Testing

As you can see, in the previous programs the program starts at the top of the program and

works down through your lines of code. We can divert this "natural" program flow as

shown in this section. Also in the previous section we used variables to keep your program

from doing the same thing every time it's run. This section will teach you the core of doing

different things: conditionals.

The major conditional, the IF commands, work to direct program flow. Program flow is

the term for the "path" the executed statements follow. Up until now, the program flow

has started at the first line and worked down to the last line. With conditional statements,

you can skip one or more lines depending on a condition.

The core to any conditional is a Boolean, or true/false, value. If the value is True (any non-zero

value, preferably -1), it does one thing. A value of False (0) does another thing. You can get T/F

values by using the other two kinds of operators: relational and logical (Boolean)/binary.

Relational operators are tests between two number values. Basically, you can find

how two numbers relate to each other. Here's a table of all of them:

Name Symbol(s) Description

Equal to = Returns true if the two values are equal, and false if not.

Not Equal to <>, >< Returns true if the two values are not equal, and false if they are.

By Avinash Ranjan 5
k.s.m. college Aurangabad

QBASIC

Greater than >
Returns true if the first number is greater than the second, and

false if not.

Less than <
Returns true if the first number is less than the second, and false

if not.

Greater than or

>=, =>

Returns true if the first number is greater than or equal to the

Equal to second, and false if not.

Less than or Equal <=, =< Returns true if the first number is less than or equal to the second,
to and false if not.

Now that you know all about logical and relational operators, we'll put them to use. There

are two main commands you can use with conditionals: IF and SELECT CASE. Both are

similar, but are better suited to some things over others. Really, IF can be used wherever

SELECT CASE can, but not the other way. Let’s start with the more common one, IF.

IF Command (if-then-else --single-line form)

Syntax: IF condition THEN statement [ELSE statement]
The IF command in this form lets you execute a line depending on a condition. condition is

a True/False value. If condition is True (not 0), then the statement following THEN is

executed. If condition is False (0) and an ELSE clause is included, the statement following

ELSE is executed; or else, flow continues to the next line. This command is small and good

if you only need to do one thing based on a condition.

Example: IF guess% = 5 THEN PRINT "Good job!" ELSE PRINT "You stink!"

IF Command (If-Elseif-else -- block form)

Syntax:
IF condition THEN

<statements>

[ELSEIF condition THEN
<statements>

] ...

[ELSE

<statements>
]

END IF

As you can see, this form of IF is designed for both complex situations and large chunks of code.

First, the top condition is tested. If true, the code between it and the next ELSEIF, ELSE, or END

IF is run. If it's false, the next ELSEIF clause is tested, and so on. If none of the clauses are true,

the ELSE's code is run. After going through any chunk of code, flow returns to after the END IF

line. The ELSE clause is optional, and you can have as many ELSEIF clauses as you

By Avinash Ranjan 6
k.s.m. college Aurangabad

QBASIC

wish.

Let’s see a sample program that demonstrates the use of both forms of IF. This is a

number guessing game.

Example:

'Number Guessing Game, version 1.0
CLS

number% = 5
PRINT "Welcome to the game! Try to guess the number I'm thinking

of!" INPUT "Guess a number between 1 and 10:", guess% IF guess% <1

OR guess% > 10 THEN

PRINT "You guessed out of range!"

ELSEIF guess% = number% THEN

PRINT "Terrific! You guessed right on the money!"

ELSE

PRINT "Too bad. You missed the target."

INPUT "Do you want to know what it was (Y/N)"; see$ IF

see$ = "Y" THEN PRINT "The answer was"; number%

END IF

END

Note: In large programs you might have a number of blocks inside each other. It's easy to

forget the closing statements, and QBasic gives cryptic, confusing errors when you leave

a block or loop open. For example, you might get a "Block IF with no END IF" error

when in fact you forgot to close one of your loops. Even QBasic admits it.

Now, here's another way to do conditionals. This way is preferred when you are only

examining the value of one variable throughout the tests.

SELECT CASE Command

Syntax:
SELECT CASE expression
CASE {expression1 [, expression2, ...] | IS relational_operator expression

| expression1 TO expression2}

<statements>

[CASE (see choices above)

<statements>

] ...

[CASE ELSE

statements

]

END SELECT

This block statement looks at the value of the beginning expression. It checks the first CASE.

By Avinash Ranjan 7
k.s.m. college Aurangabad

QBASIC

The expression1 [, expression2, ...] form checks to see if the value equals a certain value.

The IS relational_operator expression form checks to see how it relates to another value.

The expression1 TO expression2 checks to see if it is between (inclusively) two other

values. If it is found to be True, the following block of code is run. If none are found True,

the C ASE ELSE block (if it exisis) is run. After a block is run, the program continues after

the END SELECT keyword.

SELECT CASE is recommend when checking the value of one number, and IF when

using multiple variables in your tests. It's all personal preference, though. The next

program shows how SELECT CASE can be used.

Example:

'SELECT CASE demonstration
CLS

INPUT "Please enter your marks: ", marks%

SELECT CASE marks%

CASE < 60

PRINT "You have a D- grade."

CASE 61 TO 70

PRINT "You have a C- grade"

CASE 71 TO 80
PRINT "You got a B - grade."

CASE 100

PRINT "You did very well, Excellent"

CASE ELSE

PRINT "You failed."

END SELECT

END

Iteration -- Loops

Loops are the nice and easy solution if you wanted your program to do something repeatedly. All

of the loop constructions in QBasic execute a block of commands repeatedly 0 or more times.

FOR/NEXT Loop Construct

Syntax:
FOR counter = start TO end [STEP

increment] NEXT [counter]
The FOR/NEXT loop iterates the commands a set number of times. You assign a numeric

variable as the counter. It changes value each iteration. The start and end values are the

first and last values counter will be. You can also specify the increment, which can be

positive or negative but not 0. If you omit it, it defaults to 1. The FOR/NEXT construct is

ideal for blocks of code you want to run n times.

Example:
FORI=1TO10STEP2

'Write my name 5 times

By Avinash Ranjan 8
k.s.m. college Aurangabad

QBASIC

PRINT “Kuldeep”;

NEXT I

DO/LOOP Loop Construct

Syntax:
DO {WHILE|UNTIL} condition
LOOP

or
DO
LOOP {WHILE|UNTIL} condition

Note the two different ways of using it. If you put the condition at the beginning, it is

evaluated before each loop execution. If you put it with LOOP at the end, however, it

evaluates it after each execution! This guarantees that, no matter what, the code inside

runs at least once. If you use the WHILE keyword before the condition, the loop runs as

long as condition is true. If you use UNTIL, the loop runs as long as condition is false!

Example:
'This example shows one of its best uses: verifying input!
DO 'run the code at least once

INPUT "Enter a number between 1 and 10. ", num%

LOOP UNTIL num% > 0 AND num% < 11 'wait until it's valid

EXIT Command

Syntax: EXIT {FOR | DO}
The EXIT command lets you break out of a FOR/NEXT or DO/LOOP construct in the

middle of the code. This would be used when you must stop the loop prematurely. For

example, if you have a FOR/NEXT going from 1 to 10 and you need to end it early because

another condition is true, you can use EXIT FOR to stop the loop.

Example:
DO

INPUT "Please enter a number between 1 and 10. ",

num% IF num% > 0 AND num% < 11 THEN EXIT DO PRINT

"Hey! Can't you read?"

LOOP 'note that the DO/LOOP can be used without a condition at all,

'resulting in an infinite loop. EXIT is the only way to break such

a loop.

By Avinash Ranjan 9
k.s.m. college Aurangabad

