
{

 struct student s1={”sona”,16,101 };

 struct student s2={”rupa”,17,102 };

display(s1);

display(s2);

}

display(struct student s)

{

printf(“\n name=%s, \n age=%d ,\n roll=%d”, s.name, s.age, s.roll);

}

Output: name=sona

 roll=16

 Lecture Note: 26

 UNION

Union is derived data type contains collection of different data type or dissimilar
elements. All definition declaration of union variable and accessing member is
similar to structure, but instead of keyword struct the keyword union is used, the
main difference between union and structure is

 109 *Under revision

 Each member of structure occupy the memory location, but in the unions
members share memory. Union is used for saving memory and concept is useful
when it is not necessary to use all members of union at a time.

Where union offers a memory treated as variable of one type on one occasion
where (struct), it read number of different variables stored at different place of
memory.

Syntax of union:

union student

{

datatype member1;

datatype member2;

};

Like structure variable, union variable can be declared with definition or separately
such as

union union name

{

Datatype member1;

}var1;

Example:- union student s;

Union members can also be accessed by the dot operator with union variable and if
we have pointer to union then member can be accessed by using (arrow) operator
as with structure.

 110 *Under revision

Example:- struct student

struct student

{

int i;

char ch[10];

};struct student s;

Here datatype/member structure occupy 12 byte of location is memory, where as in
the union side it occupy only 10 byte.

 Lecture Note:27

Nested of Union

When one union is inside the another union it is called nested of union.

Example:-

union a

{

int i;

int age;

};

union b

 111 *Under revision

{

char name[10];

union a aa;

}; union b bb;

There can also be union inside structure or structure in union.

Example:-

 void main()

 {

 struct a

 {

int i;

char ch[20];

};

struct b

{

int i;

char d[10];

};

union z

{

struct a a1;

struct b b1;

 112 *Under revision

}; union z z1;

z1.b1.j=20;

z1.a1.i=10;

z1.a1.ch[10]= “ i“;

z1.b1.d[0]=”j “;

printf(“ “);

Dynamic memory Allocation

The process of allocating memory at the time of execution or at the runtime, is
called dynamic memory location.

Two types of problem may occur in static memory allocation.

If number of values to be stored is less than the size of memory, there would be
wastage of memory.

If we would want to store more values by increase in size during the execution on
assigned size then it fails.

Allocation and release of memory space can be done with the help of some library
function called dynamic memory allocation function. These library function are
called as dynamic memory allocation function. These library function prototype
are found in the header file, “alloc.h” where it has defined.

Function take memory from memory area is called heap and release when not
required.

Pointer has important role in the dynamic memory allocation to allocate memory.

malloc():

 113 *Under revision

