
 Lecture Note: 4

 Constants

Constant is a any value that cannot be changed during program execution. In C,
any number, single character, or character string is known as a constant. A constant
is an entity that doesn’t change whereas a variable is an entity that may change.
For example, the number 50 represents a constant integer value. The character
string "Programming in C is fun.\n" is an example of a constant character string. C
constants can be divided into two major categories:
Primary Constants
Secondary Constants

These constants are further categorized as

 Numeric constant
 Character constant
 String constant

 21 *Under revision

Numeric constant: Numeric constant consists of digits. It required minimum size
of 2 bytes and max 4 bytes. It may be positive or negative but by default sign is
always positive. No comma or space is allowed within the numeric constant and it
must have at least 1 digit. The allowable range for integer constants is -32768 to
32767. Truly speaking the range of an Integer constant depends upon the compiler.
For a 16-bit compiler like Turbo C or Turbo C++ the range is –32768 to 32767.
For a 32-bit compiler the range would be even greater. Mean by a 16-bit or a 32-
bit compiler, what range of an Integer constant has to do with the type of compiler.

It is categorized a integer constant and real constant. An integer constants are
whole number which have no decimal point. Types of integer constants are:
 Decimal constant: 0-------9(base 10)
 Octal constant: 0-------7(base 8)
 Hexa decimal constant: 0----9, A------F(base 16)

 In decimal constant first digit should not be zero unlike octal constant first digit
must be zero(as 076, 0127) and in hexadecimal constant first two digit should be
0x/ 0X (such as 0x24, 0x87A). By default type of integer constant is integer but if
the value of integer constant is exceeds range then value represented by integer
type is taken to be unsigned integer or long integer. It can also be explicitly
mention integer and unsigned integer type by suffix l/L and u/U.

Real constant is also called floating point constant. To construct real constant we
must follow the rule of ,
 -real constant must have at least one digit.
 -It must have a decimal point.
 -It could be either positive or negative.
 -Default sign is positive.
 -No commas or blanks are allowed within a real constant. Ex.: +325.34

426.0
-32.76

To express small/large real constant exponent(scientific) form is used where
number is written in mantissa and exponent form separated by e/E. Exponent can
be positive or negative integer but mantissa can be real/integer type, for example
3.6*105=3.6e+5. By default type of floating point constant is double, it can also be
explicitly defined it by suffix of f/F.

Character constant

 22 *Under revision

 Character constant represented as a single character enclosed within a single
quote. These can be single digit, single special symbol or white spaces such as
‘9’,’c’,’$’, ‘ ’ etc. Every character constant has a unique integer like value in
machine’s character code as if machine using ASCII (American standard code for
information interchange). Some numeric value associated with each upper and
lower case alphabets and decimal integers are as:

 A------------ Z ASCII value (65-90)

 a-------------z ASCII value (97-122)

 0-------------9 ASCII value (48-59)

 ; ASCII value (59)

 String constant

 Set of characters are called string and when sequence of characters are
enclosed within a double quote (it may be combination of all kind of symbols) is a
string constant. String constant has zero, one or more than one character and at the
end of the string null character(\0) is automatically placed by compiler. Some
examples are “,sarathina” , “908”, “3”,” ”, “A” etc. In C although same characters
are enclosed within single and double quotes it represents different meaning such
as “A” and ‘A’ are different because first one is string attached with null character
at the end but second one is character constant with its corresponding ASCII value
is 65.

Symbolic constant
Symbolic constant is a name that substitute for a sequence of characters and,
characters may be numeric, character or string constant. These constant are
generally defined at the beginning of the program as

 #define name value , here name generally written in
upper case for example

 23 *Under revision

 #define MAX 10

 #define CH ‘b’

 #define NAME “sony”

 Variables

Variable is a data name which is used to store some data value or symbolic names
for storing program
computations and results. The value of the variable can be change during the
execution. The rule for naming the variables is same as the naming identifier.
Before used in the program it must be declared. Declaration of variables specify its
name, data types and range of the value that variables can store depends upon its
data types.

Syntax:

 int a;

char c;

float f;

Variable initialization

 When we assign any initial value to variable during the declaration, is called
initialization of variables. When variable is declared but contain undefined value
then it is called garbage value. The variable is initialized with the assignment
operator such as

 Data type variable name=constant;

 Example: int a=20;

 Or int a;

 a=20;

 24 *Under revision

statements

 Lecture Note: 5

Expressions

An expression is a combination of variables, constants, operators and function call.
It can be arithmetic, logical and relational for example:-

 int z= x+y // arithmatic expression

 a>b //relational

 a==b // logical
 func(a, b) // function call
Expressions consisting entirely of constant values are called constant expressions.
So, the expression
121 + 17 - 110
is a constant expression because each of the terms of the expression is a constant
value. But if i were declared to be an integer variable, the expression
180 + 2 – j
would not represent a constant expression.

 Operator

This is a symbol use to perform some operation on variables, operands or with the
constant. Some operator required 2 operand to perform operation or Some
required single operation.

Several operators are there those are, arithmetic operator, assignment, increment ,
decrement, logical, conditional, comma, size of , bitwise and others.

 1. Arithmatic Operator

This operator used for numeric calculation. These are of either Unary arithmetic
operator, Binary arithmetic operator. Where Unary arithmetic operator required

 25 *Under revision

only one operand such as +,-, ++, --,!, tiled. And these operators are addition,
subtraction, multiplication, division. Binary arithmetic operator on other hand
required two operand and its operators are +(addition), -(subtraction),
*(multiplication), /(division), %(modulus). But modulus cannot applied with
floating point operand as well as there are no exponent operator in c.

Unary (+) and Unary (-) is different from addition and subtraction.

When both the operand are integer then it is called integer arithmetic and the result
is always integer. When both the operand are floating point then it is called floating
arithmetic and when operand is of integer and floating point then it is called mix
type or mixed mode arithmetic . And the result is in float type.

 2.Assignment Operator

A value can be stored in a variable with the use of assignment operator. The
assignment operator(=) is used in assignment statement and assignment expression.
Operand on the left hand side should be variable and the operand on the right hand
side should be variable or constant or any expression. When variable on the left
hand side is occur on the right hand side then we can avoid by writing the
compound statement. For example,

 int x= y;

 int Sum=x+y+z;

 3.Increment and Decrement

The Unary operator ++, --, is used as increment and decrement which acts upon
single operand. Increment operator increases the value of variable by one
.Similarly decrement operator decrease the value of the variable by one. And these
operator can only used with the variable, but cann't use with expression and
constant as ++6 or ++(x+y+z).

 26 *Under revision

It again categories into prefix post fix . In the prefix the value of the variable is
incremented 1st, then the new value is used, where as in postfix the operator is
written after the operand(such as m++,m--).

EXAMPLE

let y=12;

z= ++y;

y= y+1;

z= y;

Similarly in the postfix increment and decrement operator is used in the operation .
And then increment and decrement is perform.

EXAMPLE

let x= 5;

y= x++;

y=x;

x= x+1;

 4.Relational Operator

It is use to compared value of two expressions depending on their relation.
Expression that contain relational operator is called relational expression.

Here the value is assign according to true or false value.

a.(a>=b) || (b>20)

b.(b>a) && (e>b)

c. 0(b!=7)

 5. Conditional Operator

 27 *Under revision

It sometimes called as ternary operator. Since it required three expressions as
operand and it is represented as (? , :).

SYNTAX

exp1 ? exp2 :exp3

Here exp1 is first evaluated. It is true then value return will be exp2 . If false then
exp3.

EXAMPLE

void main()

{

 int a=10, b=2

 int s= (a>b) ? a:b;

 printf(“value is:%d”);

 }

Output:

 Value is:10

 6. Comma Operator

 Comma operator is use to permit different expression to be appear in a situation
where only one expression would be used. All the expression are separator by
comma and are evaluated from left to right.

EXAMPLE

int i, j, k, l;

for(i=1,j=2;i<=5;j<=10;i++;j++)

 28 *Under revision

 7. Sizeof Operator

Size of operator is a Unary operator, which gives size of operand in terms of byte
that occupied in the memory. An operand may be variable, constant or data type
qualifier.

Generally it is used make portable program(program that can be run on different
machine) . It determines the length of entities, arrays and structures when their size
are not known to the programmer. It is also use to allocate size of memory
dynamically during execution of the program.

EXAMPLE

main()

{

int sum;

float f;

printf("%d%d" ,size of(f), size of (sum));

printf("%d%d", size of(235 L), size of(A));

}

 29 *Under revision

 Lecture Note: 6

8. Bitwise Operator

Bitwise operator permit programmer to access and manipulate of data at bit level.
Various bitwise operator enlisted are

 one's complement (~)

bitwise AND (&)

bitwise OR (|)

 bitwise XOR (^)

left shift (<<)

right shift (>>)

These operator can operate on integer and character value but not on float and
double. In bitwise operator the function showbits() function is used to display the
binary representation of any integer or character value.

In one's complement all 0 changes to 1 and all 1 changes to 0. In the bitwise OR its
value would obtaining by 0 to 2 bits.

As the bitwise OR operator is used to set on a particular bit in a number. Bitwise
AND the logical AND.

It operate on 2operands and operands are compared on bit by bit basic. And hence
both the operands are of same type.

Logical or Boolean Operator

Operator used with one or more operand and return either value zero (for false) or
one (for true). The operand may be constant, variables or expressions. And the
expression that combines two or more expressions is termed as logical expression.
C has three logical operators :

 30 *Under revision

 Operator Meaning

 && AND
 || OR
 ! NOT
Where logical NOT is a unary operator and other two are binary operator. Logical
AND gives result true if both the conditions are true, otherwise result is false. And
logial OR gives result false if both the condition false, otherwise result is true.

Precedence and associativity of operators

Operators Description Precedence level Associativity

() function call 1 left to right

[] array subscript

 arrow operator
. dot operator

+ unary plus 2 right to left
 - unary minus
++ increment
 - - decrement
! logical not
~ 1’s complement
* indirection
& address
(data type) type cast
sizeof size in byte
 * multiplication 3 left to right
/ division
% modulus
--
+ addition 4 left to right

 31 *Under revision

 - subtraction
--
<< left shift 5 left to right
>> right shift
--
<= less than equal to 6 left to right
>= greater than equal to
< less than
 > greater than
--
== equal to 7 left to right
!= not equal to
--
& bitwise AND 8 left to right
--
^ bitwise XOR 9 left to right

| bitwise OR 10 left to right
&& logical AND 11
|| logical OR 12
?: conditional operator 13
--
=, *=, /=, %= assignment operator 14 right to left
&=, ^=, <<=
>>=

, comma operator 15
--

 Lecture Note: 7

 Control Statement

 Generally C program statement is executed in a order in which they appear
in the program. But sometimes we use decision making condition for execution
only a part of program, that is called control statement. Control statement defined

 32 *Under revision

