

KISHORI SINHA MAHILA COLLEGE

AURANGABAD BIHAR

 QBASIC

NOTES
(AVINASH RANJAN)

1.General Concept

 Program and Programming
 Program – A collection of sequential instructions

given to computer to carry out certain task.

 Programming – The work of writing a set of

sequential instructions is called programming.

 Programmer – The person who writes a set of

instructions to a computer.

1.General Concept

 Programming language
 A language used for expressing a set of

computer instructions.

 A language medium between the computer and

the user in order to understand each other.

 Responsible for the human – computer system

communication.

 Consists of necessary symbols, characters and

grammar rules.

 Programming language

 Many computer language e.g., C, C++,

FORTRAN, PASCAL, COBOL, LISP,

BASIC, ALGOL etc.

 BASIC – Beginners All Purpose Symbolic

Instruction Code.

 GW-BASIC, BASICA, TURBO BASIC,

QBASIC are different versions of the

BASIC programming language.

Programming

Languages

Assembly

language

Machine

Level

language

Low level

language

Procedure

Oriented

Problem

Oriented

High level

language

 Categories of Programming

Language

1.4 Translator (Compilers and

Interpreters)

 Computer understands Machine

Language only

 Translator - Program that translates a

code from one programming language

to another (usually machine code).

 Compiler – Program that translates

High Level Language into machine

code.

1.4 Translator (Compilers and

Interpreters)

- Source program – the program written in a high-level-
language

- Object program – the machine code equivalent
translated by the compiler.

- In a compiler – translation and execution are two
separate distinct phases.

 Interpreter – A program execution environment
that accepts high-level language statements and
performs desired operations immediately without
compilation.

Object program Compiler Source program

 Text Editor, Linker and Debugger

 Text Editor – In this programmer types the

necessary set of instructions to write a program,

which becomes the source code.

 Linker – Converts object program or Object

Code to Executable Program, which can directly

execute in any computer.

 Debugger – Helps in finding the bugs in a

program.

1.5 Program Development Cycle

 Any program to be developed to solve
certain problem should follow the
development cycle:-

 Defining the problem

 Analyzing the problem

 Designing a solution (Pseudo code, Algorithm,
Flowchart)

 Coding the solution

 Testing and debugging the program

 Documenting the program

1.5 Program Development Cycle

 Defining the problem
 Clearly define the problem for which a program is

to be develop.

 Explain in statements that are clearly
understood.

 E.g., Write a program which

a) Requests the user to enter a temperature in
degree centigrade.

b) Calculates the corresponding temperature in
degrees Fahrenheit.

c) Prints the given temperature and the
converted value.

1.5 Program Development Cycle

 Analyzing the problem
 Clearly analyze the problem to make sure that we

have a clear understanding of the problem.

 Should be clear about general requirement such
as the main inputs to the program, necessary
processing and the main outputs from the
program.

 E.g., In our example, the input is the Centigrade
temperature C entered using a keyboard, the
necessary processing is to convert C by using the
formula F = 32 + (9 C / 5).

 The output will be displayed on the monitor.

1.5 Program Development Cycle

 Designing a solution (Pseudo code,

Algorithm, Flowchart)
 More than one solution - Different ways of solving

a problem.

 Choose the best and efficient one.

 Pseudo code, Algorithm, Flowchart to produce a

solution to a given problem.

 More than one Algorithm to solve the problem with

its own advantages and disadvantages.

 Programmer should decide the best and efficient

algorithm.

Designing a solution (Pseudo code,

Algorithm, Flowchart)

 E.g., Searching a word in a dictionary.

- Search from the beginning ?

- Search from the end ?

- Best solution – we use in practice

based on the fact that the words in a

dictionary are in an alphabetical

order.

- So the first and second solutions are

not the best solutions.

Designing a solution (Pseudo code,

Algorithm, Flowchart)

 For the temperature conversion one possible

algorithm will be:

1. Ask the user for the Centigrade temperature.

2. Store the value in a variable C

3. Calculate the corresponding Fahrenheit

temperature

4. Store it in variable F.

5. Print the values of variable C and variable F,

appropriately labeled.

6. Stop

1.5 Program Development Cycle

 Coding the solution

 The Algorithm or Flowchart is then

converted into the instruction code

understood by the computer to execute

them to produce the desired output.

 Choice of language e.g., BASIC, C, C++,

FORTRAN, COBOL etc. for coding the

solution depends upon the requirement of

the total software solution.

Coding the solution

 The coding of the temperature conversion
problem looks like:

PRINT “Enter temperature in Centigrade”;

INPUT C

LET F = 32 + (9 * C) / 5

PRINT “ Centigrade Fahrenheit”

PRINT

PRINT TAB(5);C;TAB(18);F

END

1.5 Program Development Cycle

 Testing and debugging the program

 Test the program for any Logical or Syntax
Errors

 Bug – any error in the program

 Debugging – removing of errors from the
program.

 Test data – testing data to the program for
which we know the answer, to find out
whether it is doing the intended job.

Testing and debugging the program

 E.g. some test data for above temperature

conversion problem are 0, 100 and 10 for

which the answers 32, 212, and 50 should

be displayed.

 If the program does not display the

desired output, then it contains at least

one bug. We must debug it to give the

correct output. E.g. suppose in the above

program the code line was

LET F = 22 + (9 * C) / 5

Testing and debugging the program

 Testing the program entering the value 10 degree

Centigrade, we know that corresponding

Fahrenheit temperature is 50; but the program will

display:-

Centigrade Fahrenheit

10 40

 As it does not agree with what we expect there is a

Bug.

 The logical place to look for the bug is the

calculation statement, since the conversion is

wrong. We can see 22 was mistakenly typed

instead of 32. After correction the program works

fine.

 Program Development Cycle

 Documenting the program

 An explanation of how the program works ?

 How to use it ?

 It should be done at the same time along

with all the activities.

 Each activity produces its portion of

documentation.

Documenting the program

 It should include:

I. Statement of the problem.

II. Algorithm or flowchart for solving the problem.

III. Program listing.

IV. Test data and the output produced by the program.

 Above document makes up a Technical documentation,
which is useful to a programmer, perhaps to modify the
program later.

 User documentation – document to help non-technical
person to use the program without any need to know
about the inner working of the program.

1.6 Algorithm and Flowcharts

 Algorithm – Sequential instructions needed to
solve any problem.

 Algorithm is translated into Flowchart and
program according to the requirement.

 Problem should be divided into smallest
modules possible, while developing Algorithm.

 It is called the Modular approach, which makes
the program more flexible for future
modifications.

 Algorithm must be written in such a way that
they can be easily converted into computer
instructions.

1.6 Algorithm and Flowcharts

 The desired features of an algorithm are:

 Each step of the algorithm should be

simple.

 It should be unambiguous in the sense that

the logic is clear.

 It should be effective i.e., it must lead to a

unique solution of the problem.

 It must end in a finite number of steps.

 It should be as efficient as possible.

1.6 Algorithm and Flowcharts

 Flowchart – A collection of

diagrammatically represented symbols

connected with arrowheads, which

represents a sequence of instructions for

information processing.

 John von Newmann – said to have made

the first Flowchart in 1945.

1.6 Algorithm and Flowcharts

STOP

START

 General symbols used in Flowchart
 Terminal or 'Start' & 'End' (Oval)

This symbol is used in every flowchart at the start and for

stopping the flow of instruction at the end.

:

:

:

:

General symbols used in Flowchart

Read the

Phone No.

 Input / Output (Parallelogram)

This indicates input or output of necessary information. In

this instructions of QBASIC like INPUT, READ, PRINT

etc. are used.

General symbols used in Flowchart

 Flow Directions or Flow Lines
 This is used to indicate the flow of program or

direction of the sequence of instruction. Generally

the direction are top to bottom or left to right.

It is customary to write arrowhead to the point of

line, which enters the flowchart symbol. As far as

possible these lines should not cross each other.

General symbols used in Flowchart

Lift the

Receiver

Let A = B + 5

 Process Block (Rectangle)
 This symbol is used to indicate information

processing. All the information processing work is

done inside it. In this instructions of QBASIC like

LET, FOR, GOTO etc. are used.

General symbols used in Flowchart

A

 Connector (Small Circle)
 This symbol is used to interconnect long flowchart

or between sub-routines. Usually letters written

inside it, indicates that there exits a matching

connector with the same letter to interconnect from

that point

General symbols used in Flowchart

 Decision (Diamond)
 This is used to indicate the decision stage from which the

flow of program has to branch to one between the two

choices. All the decisions processed here must produce

results in "Yes" or "No". This result depends on the test that

is performed inside this decision box. In this instructions of

the QBASIC like IF… … THEN etc. are used.

Alternate

Standard

Yes

Is There a

Dialtone ?

No

General symbols used in Flowchart

 Example: Make an algorithm and then a flowchart in detail as far as possible, for the
tasks performed, while making a phone call.

One of the possible algorithms might look like this:

Step 1. Recall the phone number.

Step 2. Lift the Phone receiver

Step 3. Check for Dial tone?

If YES Go to Step 4

If No Put down the receiver

Go to Step 2

Step 4. Dial the phone number.

Step 5. Is the phone ringing?

If Yes Go to Step 6.

If No Put down the receiver

Go to Step 2

Step 6. Has the phone being picked up?

If Yes Talk with the other end.

Go to Step 8.

If No Go to Step 7.

Step 7. Has the bell stopped ringing?

If Yes Put down the receiver

Go to Step 2.

If No Go to Step 6

Step 8. Put down the receiver.

Stop

General symbols used in Flowchart

START

READ Phone No.

Lift the Receiver
Put down the receiver

Is there dial tone?

Yes

No

Is the phone
Ringing?

No

Yes

Has the phone
been picked?

Yes

No

No
Stopped?

Yes

Has the bell

Talk with other end

Dial thNoe. Phone

STOP

Put down the
receiver

 Flowchart based upon the above algorithm is as follows:

Manual Process into Programming

Flowchart

 Example 1. Develop an algorithm
needed to calculate simple interest,
and convert it into flowchart.

Step 1. Read Principle, Rate, Time

Step 2. Multiply Principle x Rate x Time

Step 3. Divide by 100

Step 4. Write the Answer

Step 5. Any more Calculations?

If Yes Goto Step 1

No Stop

START

INPUT

P, R, T

PRINT I

ANY

MORE SUMS ?

Yes

No

STOP

LET

I = X / 100

LET

X=P * R * T

Manual Process into Programming

Flowchart
 Example 2. Develop an algorithm

needed to calculate average marks
from the marks obtained in the
seven subjects, and convert it into
flowchart.

Step 1. For 7 subjects

Step 2. Read marks

Step 3. Add marks to SUM

Step 4. Any more subjects?

Step 5. If Yes Goto Step 2

No Average = SUM / 7

Step 6. Write the Average

Step 7. Any more students?

If Yes Goto Step 2

No Stop

START

INPUT MARK

ANY MORE

Subjects?

Yes

No

Print AVERAGE

ANY MORE

Students?

No

STOP

Yes

AVERAGE =

SUM / 7

SUM = SUM + MARKS

FOR Subjects

= 1 to 7

SUM = 0

Manual Process into Programming

Flowchart

1. Develop an Algorithm to add three numbers and

convert it into Flowchart.

2. Develop an Algorithm to read two numbers and print
the bigger number. Convert it into Flowchart.

3. Develop an Algorithm to find the biggest of the three
given numbers and convert it into Flowchart.

4. Develop an Algorithm to find the sum of 10 given
numbers and convert it into Flowchart.

5. Develop an Algorithm to find the average of 5 numbers
and convert it into Flowchart.

Examples – Algorithm & Flowchart

1. Develop an Algorithm to
add three numbers and
convert it into
Flowchart.

Read three numbers N1, N2 and N3

SUM = N1 + N2 + N3

Write the SUM

Stop

START

Read N1, N2, N3

Print SUM

STOP

SUM = N1 + N2 + N3

Examples – Algorithm & Flowchart

2. Develop an Algorithm to
read two numbers and
print the bigger number.
Convert it into
Flowchart.

Read two numbers N1 and N2

Is N1 > N2

YES Print N1

NO Print N2

Stop

START

Read N1, N2

NO

Is N1 > N2?

YES

PRINT N1 PRINT N2

STOP

Examples – Algorithm & Flowchart

3. Develop an Algorithm
to find the biggest of
the three given
numbers and convert
it into Flowchart.

Read three numbers N1, N2 and

N3

Is N1 > N2

YES Is N1 > N3

YES Print N1

NO Print N3

NO Is N2 > N3

YES Print N2

No Print N3

Stop

START

Read N1, N2,

N3

NO

Is N1 > N2?

YES

NO NO

Is N1 > N3? Is N2 > N3?

YES YES

PRINT N1 PRINT N3 PRINT N2

STOP

Examples – Algorithm

& Flowchart
3. Develop an Algorithm to find

the biggest of the three given
numbers and convert it into
Flowchart. [Alternate solution]

Read three numbers N1, N2 and N3

HNo = N1

Is N2 > HNo

YES Store N2 to HNo

Is N3 > HNo

YES Store N3 to HNo

Print HNo

Stop

START

Read N1, N2, N3

YES

Is N2 > HNo?

NO

YES

Is N3 > HNo?

NO

PRINT HNo

STOP

HNo = N3

HNo = N2

HNo = N1

Examples – Algorithm & Flowchart

4. Develop an Algorithm
to find the sum of 10
given numbers and
convert it into
Flowchart.

Initialize SUM = 0

Read the numbers N1, N2, …, N10

SUM = N1+N2+ … + N10

Write SUM

Stop

START

SUM = 0

Read N1, N2, …N10

SUM = N1 + N2 + …+N10

Write SUM

STOP

Examples – Algorithm

& Flowchart

4. Develop an Algorithm to
find the sum of 10 given
numbers and convert it
into Flowchart. [Alternate
solution]

Step 1. Initialize SUM = 0

Step 2. For 10 numbers

Step 3. Read number

Step 4. Add the number to SUM

Step 5. Any more number?

Step 6. If YES Goto Step 2

No Write SUM

Stop

Read

number

Any more

number?

YES

NO

Write

SUM

STOP

SUM = SUM + number

FOR number

1 to 10

START

SUM = 0

Examples – Algorithm & Flowchart

5. Develop an Algorithm

to find the average of 5
numbers and convert it
into Flowchart.

Step 1. Initialize SUM = 0

Step 2. For 5 numbers

Step 3. Read number

Step 4. Add the number to SUM

Step 5. Any more number?

Step 6. If YES Goto Step 2

No AVG = SUM / 5

Write AVG

Stop
YES

Any more number?

NO

A

START

SUM = 0

SUM = SUM + number

FOR number

1 to 5

Read

number

Write AVG

STOP

A

AVG = SUM / 5

Flowchart Exercise

 Using standard flowcharting symbols draw a flowchart to convert
a temperature in degree Celsius into degree Fahrenheit.

 Draw a flowchart to find the greatest number among ten numbers
and display the greatest number.

 Draw a flowchart to find the square and cube of the given number
and display the result.

 Draw a flowchart to find the middle number among three numbers
and display it.

 Write algorithm and flowchart to find the volume of a box with
given Length, Breadth and Height and display the input and the
results.

 Algorithm and Flowcharts

 Advantages of Flowchart:
 Representing algorithm by flowchart and then converting

it to computer program is easier and accurate than writing

the program directly.

 Flowchart is an important aid in the development of

programming algorithm.

 Flowchart is easier to understand than the program

 Flowcharts are independent of any programming

languages. Hence, the algorithm given by a flowchart can

be translated in to more than one programming language.

2. Introduction to QBASIC

 QBASIC Programs are the advanced new form of BASIC
(Beginners All Purpose Symbolic Instruction Code)

 BASIC programming language was jointly developed by
John G. Kemney and Tomas E. Kurtz in 1963-1964 in
Dartmouth college, New Hampshire, USA .

 The instructions used in this language is very much
similar to English. Hence it is used to teach Computer
Programming to students in schools.

2. Introduction to QBASIC

 2.1 Features of QBASIC
 Very simple structured programming language.

 Easy to follow logic, user friendly, high level programming
language.

 Divided into modules within a program.

 First language for any beginning programmer.

 Instruction are very much similar to English e.g., READ, LET,
INPUT, GOTO, PRINT etc.

 Easy to find syntax errors due to its own smart editor.

 Easy to us since it has pull down menu.

 Mouse also can be used in its latest versions.

 Features of QBASIC

 List of statements, executed one at a time from the

beginning to the end.

 Statements are entered through an editor in the QBASIC
environment after the QBASIC is loaded.

 Easy to learn and teach than other programming
language.

 Easy to write Program, Run and Debug since it has more
than one window like interfaces.

 Help is also available if one needs with a click.

 Program can be modified as per the necessity.

2.1 QBASIC Interface

 QBASIC Interpreter Program has to be loaded to
develop any QBASIC Program.

 QBASIC.EXE must be present in the Hard disk
or floppy disk in order to load it.

 Type QBASIC and then press Enter from the
DOS prompt or double click the mouse on the
shortcut icon to load it.

 The following screen is displayed when QBASIC
is loaded. We can see a Menu Bar displayed at
the top of the screen.

2.1 QBASIC Interface

2.1 QBASIC Interface

 A message box is displayed, which says

<Press ESC to clear this dialog box>

 Press Esc from the keyboard then

QBASIC Editor is required to input the

necessary program, is displayed.

2.1 QBASIC Interface

 QBASIC Editor

 Environment with the facilities for entering
QBASIC Programs, save and execute them etc.

 Menu Bar is located at the top and below it at
the middle is a portion showing file name.

 The editor is divided into two portions.
 Upper portion is bigger, where program instructions are typed

in and is called Program Window.

 Lower portion is smaller called Immediate Window, where the
instruction given is executed immediately. Used to test
whether the instruction works or not.

 Status Bar is located at bottom displays the purpose of the
Function Keys and the Cursor Position.

2.3 Menu Commands

 Clicking the FILE gives the following pull down
Menu.
 New : Removes currently loaded file from

memory.

 Open : Loads new file into memory.

 Save : Saves current file.
 Save As : Saves current file with the specified

file name.

 Print : Prints specified text.

 Exit : Exits the editor and returns to DOS.

2.3 Menu Commands

 Clicking the EDIT gives the following pull down Menu.

 Cut (Shift+Del) : Deletes selected text and copies it to

buffer.

 Copy (Ctrl+Ins) : Copies selected text into buffer.
 Paste (Shift+Ins) : Inserts buffer contents at the cursor

position.
 Clear (Del) : Deletes selected text without copying it to

buffer.

 New Sub... : Opens a window for a new sub-program.
 New Function : Opens a window for a new FUNCTION

procedure.

2.3 Menu Commands

 Clicking the VIEW gives the following pull down

Menu.

 SUBS... (F2) : Displays a loaded SUB or FUNCTION.

 Split : Divides screen into two view windows.

 Output Screen (F4) : Displays output windows.

2.3 Menu Commands

 Clicking the SEARCH gives the following

pull down Menu.

 Find : Finds specified text.

 Repeat Last Find (F3): Finds next occurrence

of text specified in previous

search.

 Change : Finds and changes specified text

with the given text.

2.3 Menu Commands

 Clicking the RUN gives the following pull down

Menu.

 Start (Shift+F5) : Runs current program.

 Restart : Clears variables in preparation

for restarting the current

programming in single

stepping..

 Continue (F5) : Continues execution after a

break.

2.3 Menu Commands

 Clicking the DEBUG gives the following pull down Menu.
 Step (F8) : Executes next program statement.

 Procedure step (F10) : Executes next program statement
tracing over procedure calls.

 Trace on : Highlights statements current
executed.

 Toggle Breakpoint (F9) : Sets / clears breakpoint at the cursor
position.

 Clear All Breakpoint : Removes all breakpoints.

 Set Next Statement : Makes the statement at the cursor
position next statement to execute.

2.3 Menu Commands

 Clicking the OPTIONS gives the following pull

down Menu.

 Display : To change display attributes.

 Help Path : Sets search path for help

path.

 Syntax checking : Turns editors syntax checking

on or off.

2.3 Menu Commands

 Clicking the HELP gives the following pull down
Menu.
 Index : Displays help index.

 Contents : Displays help table of contents.
 Topic (F1) : Displays the information about the

BASIC keyword where the cursor is
on.

 Using Help (Shift+F1) : Displays information about
how to use online help.

 About : Displays product version and
copyright information.

3. Elements of QBASIC Programming

Language

 Following elements are included in any

programming language.
1. Character Set

2. Constants

3. Variables

4. Operators

5. Expression

6. Statements

3. Elements of QBASIC Programming

Language

 Character Set

In learning any programming language, we can begin
by classifying the keys of the computer keyboard into
3 categories.

 Alphabetic Characters: The alphabetic characters are A, B,

C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X,
Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x,
y, z.

 Numeric Characters: The numeric characters are 0, 1, 2, 3,
4, 5, 6, 7, 8, 9.

 Special Characters: The special characters are +, -, *, /, ^, (
), ., ,, ;, =, <>, <, <=, >, >=, " ", $, :, ?.

3. Elements of QBASIC Programming

Language

 3.2 Constants

 A symbol, whose value does not change during the

execution of the program, is called a constant.
Constants can be expressed as Literal e.g., 505,
522.12, "Nepal" etc. or as symbols e.g., PI = 3.142,
City = "Kathmandu", FiscalYr = "2061/62". Here PI,
City and FiscalYr are symbols representing constants.
There are two types of constant.

 Numeric

 String

3.2 Constants

 Numeric

 Constant whose value is numeric e.g.,

899.50, -25.46, 97 etc. are Numeric Constant.

Among these those with decimal is called

Numeric Real Constant, e.g. 899.50, -25.46

etc. And those with integer only are called

Numeric Integer Constant, e.g., 97, -568, 0

etc.

3.2 Constants

 String

 A group of letters or numbers or both, which are

enclosed by a pair of " " (quotation marks), is called

String. E.g., "ABCD"; "Ramesh"; "10 Downing Street"

etc. The variable used to store these strings is called

String Variable. The name of string variable starts

with character and should ends with $ sign. E.g., LET

A$ = "Saturday"; LET CITY$ = "Kathmandu"; LET

Adress$ = "10 Downing Street"; LET TEL1$ =

"654345" etc. Constant whose value is a string e.g.,

899.50, -25.46, 97 etc. are Numeric Constant

3. Elements of QBASIC Programming

Language

 3.3 Variables
 Simply defined, variable is a name, which can contain a value.

 Programming involves giving values to these names and
presenting them in some form to the user.

 A variable has a type, which is defined by the kind of value it
holds.

 If the variable holds a number, it may be of integer, floating
decimal, long integer, or imaginary.

 If the variable holds symbols or text, it may be a character
variable or a string variable. These are terms you will become
accustomed to as you continue programming.

3.3 Variables

 Data types and memory allocation
 There are two data types represented by variables in QBasic:

numeric and string.

 A numeric data type can further be broken down into three
categories: integer, long integer, single precision, or double
precision and is capable of storing numeric values.

 A string data type is capable of storing character values.

 A storage location is allocated in the memory of a computer
when a variable representing these data types are defined. This
memory allocation serves as a storage box for storing the
values.

 In numeric variable, real number is stored in real variable
denoted by a group of letters or letter with an integer. e.g.,
CASH1 = 899.5, when printed prints the value 899.5 without
rounding.

3.3 Variables

 Here are some examples of values a variable might contain:
STRING "hello, this is a string“

INTEGER 5

LONG 92883

SINGLE 39.2932
DOUBLE 983288.18

 The first is a string. Strings contain text.

 The last four are number types. But the computer does not know
what kind of value you are trying to give a variable unless you tell it!

 There are two methods of telling the computer what kind of variable
you are using:

 One-way is to just use the variable. This is called implicit
declaration.

3.3 Variables

 Another way is to declare the variable AS a type, which can be done
by using the DIM statement.

 E.g. a variable called number, which would contain an integer
(whole number, no digits after the decimal point) is defined as:

DIM number AS INTEGER

 Then you would use that variable as an integer.

 The word DIM actually originates from the word Dimension, it will be
clear when we discuss arrays. This is called explicit declaration.

 Put a symbol after the variable name, which is defined as
representing that type.

 QBasic has a set of symbols, which represent each variable type:
$ String

% Integer

& Long

! Single

Double

3.3 Variables

 Appending one of these symbols to the name of a
variable when you use it in the program tells the
computer that you are using it as that type.

 Declaration of the variable in this way is a popular
practice.

 The most common error in QBasic is the infamous Type
Mismatch, which means that you are trying to put a value
into a variable of the wrong type.

 You might be trying to put the letters "hi there" into an
integer variable.

 If you don't define the type of the variable, then QBasic
assumes it is of the Single Precision type, which can
often yield unexpected results.

3.3 Variables

 Using type declaration characters (%, &, !, #, and $)
 A numeric variable name must begin with a letter, followed by

letters, digits, and periods (no blanks or underscores).

 By default, a variable will automatically be thought to be of single
precision type, which is capable of accurately displaying
numbers up to seven decimal places. You can specify a variable
to be of single precision type by using the following syntax:

 cost
cost!

Notice that an exclamation point (!) is attached to the end of the
second variable name. This is not needed but is often used in
programs so the programmer will know that data is of single
precision type.

Using type declaration characters

(%, &, !, #, and $)

 A double precision type is used when the programmer
is working with large values that may need to display
numbers up to fifteen decimal places. You can specify
a variable to be of double precision type by using the
following syntax:

cost#

Notice the hash symbol (#) attached to the end of
the variable. This lets QBasic associate data as being
of double precision type.

Using type declaration

characters (%, &, !, #, and $)

 When strictly working with integer values and no need to use
floating point values (single or double types).

 Integer number is stored in an integer variable represented by a
group of letters or a letter with %(percentage) sign.

 specify the variable to be of type integer by using the following
syntax:

cost%

Notice the percentage symbol (%) attached to the end of the

variable. This lets QBasic associate data as being of integer
type.

E.g. CASH% = 899.5, when the value of the variable is printed the
value is rounded and printed as 900. If CASH% = 899.4, then
only 899 is printed after rounding.

Using type declaration

characters (%, &, !, #, and $)

 If working with extremely large integral values,
you can specify the variable to be of type long
by using the following syntax:

cost&

Notice the ampersand symbol (&) attached
to the end of the variable. This lets QBasic
associate data as being of long integer type.

Using type declaration

characters (%, &, !, #, and $)

 If working with string values, you can specify

the variable to be of type string by using

following syntax:

cost$

 Notice the dollar symbol ($) attached to the

end of the variable. This lets QBasic associate

data as data as being of string type.

Variables and its types in brief

Type of variable Number / Characters Memory Example

String 0 to 32767 character 1 Byte of each

character

A$

Integer A whole number – 32767

to 32767

2 Bytes A%

Long Integer A whole number- 2 and

more than 2 billion

4 Bytes A&

Single precision A number with up to 7

digits after decimal point

4 Bytes A!

Double precision A number with up to 15

digits after decimal point

8 Bytes A#

 Variables

 Using DIM AS statement

 Declare variable or array in the program
DIM <variable> As <Type>, <variable> As <Type>,

 The Data Type can be Integer, Long integer, Single precision, Double

precision or String.

 Array is also a type of variable.

 To dimension variables in this way, the DIM statement(s) must be
placed at the very beginning of your program before the variable(s) are
used in the program.

 After you declare a string variable using the DIM statement, you are not
allowed to attach a dollar sign ($) to the end of the variable.

Using DIM AS statement

 The DIM statement is used to declare

variables as follows:

DIM state AS STRING

DIM number AS INTEGER

DIM profit AS DOUBLE

DIM gpa AS SINGLE

DIM example

CLS

DIM EXP1 AS STRING

DIM EXP2 AS STRING * 4

EXP1 = “PROGRAMMING IS FUN”

EXP2 = “ I LOVE PROGRAMMING”

PRINT EXP1

PRINT EXP2

END

The first string variable EXP1 is a variable length string variable (can store

0 to 32767 characters).
The second variable EXP2 is a fixed length string variable, in which

STRING * 4 indicates that it can hold only maximum of 4 characters.

Using DIM AS statement

 Example:

CLS

X% = 25

Y% = 9

Sum% = X% + Y%

Print “Total is “; Sum%

END

In this X%, Y% and Sum% is used directly without
declaring first. This is the Implicit declaration uses
specific symbol at the end of the name to indicate the
data type.

3.3 Variables

 Some valid an invalid numeric variable names are provided below:

Valid Numeric Variable Names
firstTest
profit&
gpa!
total.Price
company8
COURSE2D

Invalid Numeric Variable Names
1stClass --> (must begin with letter)
total Price --> (no spaces)
name,First --> (no commas)

3.3 Variables

 Some valid and invalid string variable names are
provided below:

Valid string variable names:

firstName$
heading$
course23Name$

Invalid string variable names:

firstName --> (must end with $)
company Name$ --> (no spaces)
name,First$ --> (no commas)

3.4 Operators

 Various symbols used to perform arithmetic and logical
operations in programming language.

 E.g., 18 + 56, in this + is the operator and 18 and 56 are
operand.

 Eg., A – B < C, in this – and < are the operators and A, B and C
are operand.

 In any programming language value of arithmetic or logical
operations are tested by using various operator symbols.
Operators can be classified in 4 types.
 Arithmetic Operators

 Relational Operators

 Logical Operators and

 String Operators

3.4 Operators

 In algebra, we follow the sequence of BODMAS to solve problems.

But in QBASIC, the order of operations or the operators precedence

is different.

In case of operators with

same order of execution,

the left most operator of

the expression is solved

first.

Operator QBASIC'S order of

execution

() 1

^ 2

* or / 3

+ or - 4

= or, <> or, < or, <= or,

> or, >=

5

NOT 6

AND 7

OR 8

3.4 Operators

 Arithmetic operators (+, -, *, /,MOD, ^)
 used to solve for value of an expression. In QBASIC, the following

arithmetic operators can be used.

Operator Action Example

+ Addition A + B OR 10 + 5

- Subtraction C – D OR 30 – 23

* Multiplication P * Q or 12 * 5

/ Division R / S OR 35 / 7

^ To the power X^2 or 6^2

3.4 Operators

 In QBASIC programming language, we should think of
the following differences in using Algebra.

 Multiplication is never implied.

e.g., A = B * C instead of A = BC

D = E * (F + G) instead of D = E(F + G)

 Operators cannot be written adjacent to each other.

e.g., H = 5 * (-I) instead of H = 5 * - I

J = K * (-L) instead of J = K (- L)

 Zero cannot divide.

e.g., M = 0 N = P / M gives error.

 Instead of exponentiation i.e., 26 we write 2^6 or
2*2*2*2*2*2

Example of QBASIC operators

 Example 1. Solve given expression by finding stepwise value in the order
of QBASIC operators execution.

A = 5^2 + 2 * 5 + (60 – 10) – 125 / 25

Finding step wise value in order of QBASIC operators execution

Step Expression Value

1 60 – 10 50

2 5^2 25

3 2 *5 10

4 125 / 25 5

5 25 + 10 35

6 35 + 50 85

7 85 – 5 80

Hence, the value of A is 80.

Example of QBASIC operators

 Example 2. Write the algebraic expression given below in QBASIC programming
code.

i. x + y + z ii. LB iii. x iv. PQ

y S

v. 3x2+y

 The above algebraic expression is written in QBASIC as follows:

No. QBASIC

(i) x + y + z

(ii) L * B

(iii) x / y

(iv) P * Q / S

(v) 3 * x^2 + y

3.4 Operators

 Relational operators (=, >, <, >=, <=, <>)
 used to compare two or more values. Using this we can compare

value/s of variable/s with a constant. In QBASIC the following relational

operators can be used.

Operator Relation Example

= Equal to IF A = B THEN

<> Not equal to IF C <> 550 THEN …..

< Less than IF A < 250 THEN

<= Less than or equal to IF A <= 100 THEN

> Greater than IF A > 450 THEN

>= Greater than or equal to IF P >= 45 THEN

 Operators

 When we compare strings (i.e., the characters inside the double quotes " ")
using above relational operators, single character from same position of the
strings are compared at one time.

 Actually, the ASCII code value of those characters is compared. If the ASCII
value of both the compared strings is same then those two strings are
equal.

Example:

 (i) If NAME1$ = "HARI“ and NAME2$ = "HARI" then NAME1$ = NAME2$ or

"HARI" = "HARI“

 (ii) If FNAME$ = "RAM" and MNAME$ = "KRISHNA" then we can join them

as FNAME$ + " " + MNAME$, whose value becomes "RAM KRISHNA".

 (iii) The value of "AB" > "AA" is true.

3.4 Operators

 Logical operators (AND, OR, NOT)
 Used to examine two or more relations.

 The outcome of this examination is given in

True or False (Yes or No).

 Logical operators most often used are AND, OR

and NOT.

 Operators - AND

 The outcome of AND becomes true, only

when all the conditions joined by it are

true.

 e.g., IF A = 10 AND B = 7, here the

outcome of this condition becomes true,

only if the value of A is 10 and the value of

B is 7.

3.4 Operators – AND

Outcome Table of AND

Conditions Outcome

I II I AND II

True True True

True False False

False True False

False False False

• If both the conditions I and II are true, the outcome becomes

true.

• If any one condition is false then outcome becomes false.

• Also, if both the conditions are false, the outcome also becomes

false.

• This type of table is also known as Truth Table.

3.4 Operators – OR

 The outcome of OR becomes true, when

any one of the conditions joined by it is

true.

 e.g., IF A = 12 OR B = 9, here the

outcome becomes true when either the

value of A is 12 or the value of B is 9.

3.4 Operators – OR

Outcome Table of OR

Conditions Outcome

I II I OR II

True True True

True False True

False True True

False False False

• If both the conditions I and II are true or either is true, the outcome

becomes true.

• Only when both the conditions are false the outcome also becomes

false.

3.4 Operators – NOT

 NOT gives contrary outcome of the value

of any condition.

 E.g., IF A NOT = 560 here, the

outcome of the condition becomes true, if

the value of A is not 560.

 If the value of A is 560 then the outcome

becomes false.

3.4 Operators – NOT

Outcome Table of NOT

Condition Outcome

I NOT I

True False

False True

• It is clearly seen that if the value of condition I is True the

outcome becomes False.

• And if the value of condition I is False, the outcome becomes

True. Hence, it is obvious that the outcome is quite reverse of the

value of the condition.

3.5 Expression

 Arithmetic expression
 Consists of numbers or variables or both made by using the

operators ^, *, /, +, -.

 The arithmetic expression always has some sort of numeric
value.

 Example:

CLS

Y = 2

X = Y^4

Z = X*Y

Z1 = X/Y

Z2 = X+Y

Z3 = X-Y

 In above example Y^4, X*Y, X/Y, X+Y, and X-Y are arithmetic
expressions. All of these arithmetic expressions have certain
numeric value.

3.5 Expression

 Logical (Boolean) expression
 A logical or Boolean expression consists of

numbers or variables or both made by using the
operators >, <, <>, =, <=, >=.

 Unlike an arithmetic expression, which has some
sort of numeric value, a Boolean expression has a
value of either true or false.

 It is also referred as conditional expression.

 These expressions can be used to test a
"relationship" between two values.

 For example, the conditional expression

3 > 2 is true, while

3 > 4 is false.

3.5 Expression - Logical (Boolean) expression

 A key idea is that we can also use variables and/or arithmetic
expressions on either side of the relational operator.

 In such cases, these are evaluated (to some pair of numbers) before
the relation is evaluated.

 For example, if we had previously performed the following

assignments:
X = 5

Y = 8

If we then evaluated the following conditional expression:

X+1 < Y

We would first evaluate the expression on either side of the <, giving:

6 < 8

which evaluates to true.

Also note that we can involve strings in conditional expressions, usually to
test equality:

"yes" = answer$

would be true if the variable answer$ currently stores the string yes.

3.5 Expression - Logical (Boolean) expression

 Example:

IF 7 < 10 THEN

PRINT "seven is less than 10"

ENDIF

 In above example the Boolean expression
is: 7<10. If we evaluate the Boolean
expression for True or False, the result is
true.

 When the Boolean expression is true then
the program code following the THEN will
be executed next.

3.5 Expression - Logical (Boolean) expression

 Example using variables:

CLS

number% = 7

value% = 18

IF number% >= value% THEN

PRINT "seven is greater than or equal to eighteen "

ENDIF

 In above example the Boolean expression is: number% >
value%. If we evaluate the expression by replacing the
variable names with the values assigned to them, the
result is false.

 So do you think the PRINT statement will be executed?

 No.

 Expression
 String expression

 A string expression consists of string constants, string variables and
other string expressions combined by string operators.

 There are two classes of string operations: concatenation and string
function.

 The act of concatenating two strings is called concatenation. The plus
(+) symbol is the concatenation operator for strings.

 For example, the following program fragment combines the string
variables A$ and B$ to produce the value FILENAME:

A$ = "FILE": B$ = "NAME"

PRINT A$ + B$

PRINT "NEW " + A$ + B$

Output:

FILENAME

NEW FILENAME

 Expression - String expression
 Strings can be compared using the following relational operators: <>, =, <,

>, <=, and >=

 Note that these are the same relational operators used with numbers.

 String comparisons are made by taking corresponding characters from each
string and comparing their ASCII codes.

 The following are examples of true string expressions:

"AA" < "AB"

"FILENAME" = "FILE"+"NAME"

"X&" > "X#"

"CL " > "CL"

"kg" > "KG"

"SMYTH" < "SMYTHE"

B$ < "9/12/78" 'where B$ = "8/12/85"
 String comparisons can be used to test string values or to alphabetize

strings.

 All string constants used in comparison expressions must be enclosed in
quotation marks.

3.6 Statements

 Keyword in any programming language that instructs the computer

to carryout the actions that we want is called commands.

 In QBASIC or any programming language it is necessary to learn its
keywords, before embarking on writing programs.

 A collection of commands used in the lines of a program is called

statements.

 When the program is executed, the statements inside are executed
one after another in a controlled sequence.

 Like all programming language, QBASIC also has its own grammar
and vocabulary.

 They are used to check the syntax of commands and statements in
a program when it is executed.

 It gives message about the validity of commands and statements
based on this.

3.6 Statements

 According to the programming tasks, statement can
be generally grouped into four categories.

1. Assignment Statement

2. Declaration Statement

3. Input / Output Statement

4. Control Statement

 Besides these, others commands not inside above
classifications are:

 file system commands,

 string manipulation commands,

 mathematical calculation,

 procedure definition commands and

 commands used in calling other procedures.

 Statements – 1. Assignment Statement

 A statement used to assign value of a variable is
called Assignment Statement. e.g.,

LET A = 25

B = 17

LET C = A* B

LET Y = C

 In the examples above, the value of expression left of

the equal to sign (=), is stored in the variable.

 This is quit different from what we learnt in the
algebra, where A = B also implies that B = A.

 But here, A = B means that the value B is stored in the
variable A.

 The word LET is optional in the assignment statement.
e.g., LET A = B + C can be written as A = B + C.

 Statements – 2. Declaration Statement

 A statement used to define or declare a constant, variable or
array etc. is called Declaration Statement. e.g.,

a. CONST PI = 3.141593

b. DIM A(4,4)

c. REM This program gives the sum of integers

d. SWAP a%, b%

In the examples above:

 PI as a constant,

 A as an array of 4x4 dimension,

 REM as a remark is declared.

 This program gives the sum of integer and a statement for exchanging
the values of the integer variables a and b, are also declared.

3.6 Statements – 3. Input / Output Statement

 A statement to get data or display processed data in the screen

or write it to a printer or a file is called Input / Output Statement.
e.g.,

INPUT A

INPUT "What is your Name ?"; Name$

PRINT "How are you ? "; Name$

PRINT TAB(25); "WEL – COME"

WRITE #1, Name$, Age$

 In the examples above, statements are declared to receive date
in the variable A. "What is your Name?" is displayed on the
screen and it waits to enter the name in the variable Name$.

 "How are you? " is displayed along with the data that you entered
for Name$.

 The WEL-COME is displayed at the 25th column on the screen
and the variable data Name$ and Age$ are written in the #1 file.

 Statements – 4. Control Statement

 A statement, which controls the program flow, while executing the
program instructions one after another, is called Control
Statement. e.g.,

a. GOTO lab10:

b. IF Mark >= 80 THEN GOTO lab5:

c. IF I% = 15 THEN STOP

d. END

 In the examples above, statements to control program flow are

given.

 Branch to a line with label lab10.

 If Mark is greater or equal to 80 then branch to line with label lab5
and carryout the instruction of that line.

 To stop the program flow if the value of the integer variable I is
equal to 15.

 End of the program.

Some Important concepts used in programming.

 Some Important concepts used in programming.
 Looping and Termination: In programming, repeated execution of a

sequence of statements is called Looping. e.g.,

Ans$ = "N"

DO UNTIL Ans$ <> "Y"

.

.

READ Ans$

..

LOOP

 In above pseudo code example, the loop is repeatedly executed

until the value of the variable Ans$ becomes "Y". In this way, when
the value of Ans$ becomes "Y", termination of the loop occurs.

Some Important concepts used in programming.

 If the termination of a loop does not occur in any conditions,
then such loop is called Endless Loop. e.g.,

LET msg$ = "Pleased to know you"

Lab10:

PRINT msg$

GOTO Lab10:

END
 Here, "Pleased to know you" is printed after the Lab10 and

when the execution reaches next line.

 It again returns to label Lab10 and prints the same message
again and again.

 The only way out to get out of this endless loop is to terminate
the execution by pressing Ctrl + c or Ctrl + Break.

 To keep this type of endless loop in any program is not a good
programming, but this is taken as a Logical Error.

 Sometimes, it becomes difficult to find out such errors.

 Counter: This is a variable in which the count of number of occurrences of certain event is stored
while executing the program. e.g.,

Boy_cnt = 0

Girl_cnt = 0

READ record

DO UNTIL end

IF sex = "BOY" THEN

Boy_cnt = Boy_cnt + 1

ENDIF

IF sex = "GIRL" THEN

Girl_cnt = Girl_cnt + 1

ENDIF

READ record

LOOP

 In above pseudo code example, count of number of boys is stored in Boy_cnt and the count of
number of girls is stored in Girl_cnt. After reading each record, it checks whether the sex is boy or
girl and then increments the respective counter.

If, in the first record the Sex is "BOY" then Boy_cnt = 0 + 1 = 1

If, in the second record the Sex is "GIRL" then Girl_cnt = 0 + 1 = 1

If, in the third record the Sex is "GIRL" then Girl_cnt = 1 + 1 = 2

If, in the fourth record the Sex is "BOY" then Boy_cnt = 1 + 1 = 2

If, in the fifth record the Sex is "BOY" then Boy_cnt = 2 + 1 = 3

If, in the sixth record the Sex is "GIRL" then Girl_cnt = 2 + 1 = 3

 In this way up to the end, the count of boy and girl is incremented and stored in the counter
Boy_cnt and Girl_cnt respectively. These counters can be used in mathematical calculations in
the program.

Some Important concepts used in programming.

Some Important concepts used in programming.

 Accumulator: Any variable, in which results of mathematical calculations are stored while the
execution of the programs goes on, is called Accumulator. e.g.,

Amount = 0

READ cost

DO UNTIL end

.

Amount = Amount + Cost

.

.

READ cost

LOOP

 In above pseudo code example, every time the loop is executed, different values of the variable
Cost is added to the Amount and stored in it. At the end, the total value of cost is accumulated in
the variable Amount.

 In above example,

In the first record, if Cost = 120 then Amount = 0 + 120 = 120

In the second record, if Cost = 50 then Amount = 120 + 50 = 170

In the third record, if Cost = 500 then Amount = 170 + 500 = 670, and so on.

In this way up to the end, the values of Cost are accumulated in the variable Amount.
This accumulator can be used in mathematical calculations in program.

Some Important concepts used in programming.

 Branching or Jumping: If the execution of any program departures
conditionally or unconditionally from its sequential flow, depending on the
result of a test, it is called Branching. e.g.,

Lab10:

INPUT "Any more"; Ans$

IF Ans$ = "Y" THEN

GOTO Lab10:

ELSE

GOTO Lab20:

ENDIF

Lab20:

END

 In the above example, response to the prompt Any more? is stored to the
string variable Ans$.

 This is tested for “Y”. If the result of this test is True or Yes then the
execution of the program branches to lab10: and continues the execution.

 If the result is False or No then the execution of the program branches to
Lab20: and ends execution.

Some Important concepts used in programming.

 Debugging: Any error or fault present in a program is called bug.
Finding out of these bugs and correcting them is called debugging.

 Flag: An indicator, which is set or unset depending upon the
condition of the program is called a Flag. e.g.,

OPEN "TEST.DAT" FOR INPUT AS #1

DO

.

.

.
READ record
LOOP UNTIL (EOF(1))

 Here, in every loop, it is examined whether the EOF (end of file) is
reached for the file opened in file number 1.

 EOF is a kind of flag, which sets to True, when the records reached
the end of the file.

Some Important concepts used in programming.

 Indentation: Indentation should be followed while writing computer
programs. This helps in understanding the programming easily, minimizes
bugs and makes the debugging easy. e.g.,

REM Program to say Hello

Lab10: INPUT "Your Name :"; Name$

PRINT "Hello! "; Name$

Ans$ = "N"

INPUT "Any more "; Ans$

IF Ans$ = "Y" or Ans$ = "y" THEN

GOTO Lab10:

ENDIF

END

 Like in the IF…. THEN…… ENDIF statement of this program, indentation

should be used. Writing in this type of nested structure helps in the easy
understanding of the program.

Exercises

1. Explain the terms:
a. Program and programming

b. Source program and object program

c. Compiler and interpreter

d. Linker and Debugger

e. Algorithm and flowchart

f. Coding and debugging.

2. Explain the program development cycle with an example.

3. Write an algorithm and then a flowchart to give instructions for
a. Making tea

b. Coming to school from your home.

c. Arranging your books according to daily routine.

d. Your friend to visit your home from his residence.

e. Finding the word “Computer” in your dictionary.

Exercises

4. Write an algorithm and convert it to a flowchart. Then write QBASIC
program codes according to the flowchart (after covering related topics).

a. Read two numbers P and Q, multiply them and print the result.

b. Calculate the area [A] of a rectangle with given length [L] and breadth [B].
Print the result and make option for more requests.

c. Read two numbers M and N, subtract second from the first and print the
result.

d. Calculate the circumference (C) of a circle with a given radius (r).

e. Sum integer numbers from 1 to 50 and print the sum.

f. Sum odd numbers from 1 to 50 and print the sum.

g. Sum even numbers from 1 to 50 and print the sum.

h. Read two numbers A and B divide A by B and print the result. Stop the
process if the value of B is equal to 0 otherwise repeat the whole process from
the beginning.

i. Read two numbers P and Q, compare them and print the greatest one.

j. Calculate the total wages earned at the rate of Rs.125 per day for “n” number
days, where n is supplied by the user. Stop the process if the value of n is
equal to 0.

Exercises

5. What do you understand by modular approach of developing algorithm?

6. Explain the general symbols used in flowcharts.

7. Define and distinguish between Algorithm and Flowchart.

8. What are the advantages of Flowchart?

9. Draw a flowchart to find the greatest number among ten numbers.

10. Draw a flowchart to find the middle number among three numbers.

11. Draw a flowchart to print the sum of first ten positive integers.

12. Draw a flowchart after reading the following algorithm:
Start

Step 1: Store 1 to a

Step 2: Store 1 to n

Step 3: Store 0 to S

Step 4: Get sum of n and S and store in S

Step 5: Double the value of n

Step 6: Increase a by 1

Step 7: Is S less than 131071

(Yes: Goto step 4

No:)

Step 8: Print a

Stop

Exercises

13. Draw a flowchart according to the following
algorithm:

Start

Step 1: Read A

Step 2: Read B

Step 3: Read C

Step 4: Store A in H

Step 5: Is B greater than H

(Yes: Store B in H)

Step 6: Is C greater than H

(Yes: Store C in H)

Step 7: Display H

Stop

Exercises

14. Draw a flowchart to add N terms of the series.
S = 12 + 22 + 32 + 42 + 52+ + N2

15. What is programming? What tasks does a programming language perform?

16. What is the full form of QBASIC?

17. How can you categorize the symbols in a computer keyboard? Explain.

18. How can you choose Menu items, if the computer does not have a mouse?

19. What are the Menu bar items displayed, when the QBASIC is loaded.

20. What are the actions that can be performed under the pull down menu of following
menu items?

a. FILE

b. EDIT

c. SEARCH

21. Describe the necessary steps to write a program (WAP) in QBASIC and run it?

22. What is the major difference between QBASIC and other versions of BASIC?

23. How do you save a QBASIC program?

24. What is the use of the Output Screen when executing a QBASIC program?

Exercises

25. What do you understand by Operators? How many types of
operators are there?

26. What differences do you have to think about, while using
algebraic expression in QBASIC.

27. Make a table of Operators in the sequence of execution.

28. What do you understand by Constant and Variable?

29. What do you understand by Arithmetic Operators in QBASIC, in
what tasks they are used?

30. What is the importance of Relational Operators in QBASIC?

31. What do you understand by Logical Operators in QBASIC? What
are the mostly used logical operators?

32. Describe the following logical operator with outcome table and
explain with example?

(i) AND (ii) OR (iii) NOT

Exercises

33. Write down the algebraic expressions given below into QBASIC
operation:

(i) XY/2 (ii) (A + B) (C – D) (iii) M N + 100 (iv) A C (v) AB

-- + -- -----

B D N

(vi) 3(M + N) (vii) P(Q + R) (viii) A2 (ix) 10M + N

(x) P + 8 PQ (xi) (K + L)M2 (xii) 1 PR2(xiii) X5Y5

(xiv) X (xv) A2B2

--- ---- – 5B

Y3 2

(xvi) UT + 1 gT2 (xvii) VA(A-B)(A-C)(A-D)

2

(xviii) A = s(s-a)(s-b)(s-c)

(xix) V = P(1 + R)N (xx) PQ

----- --- – 3 (R)

100 5

Exercises

34. Correct the QBASIC operations given below:
(a) A = 2D (b) X(Y*Z) (c) P = Q*QR (d) I = PRT /100

(e) X = Y – 2 (f) K = 5.1 L + M (g) R = E/A/D (h) X = Y* - Z

(i) X = 25Y+Z (j) A = P + PNR / 100

35. Which expressions given below do not give an outcome of 4 in
QBASIC?

36. (a) (4 + 4) / 4 (b) 4 * (4 / 4) (c) 4 / (4 / 4) (d) 4+ 4 / 4
(e) 8 / 2

37. Find step-wise outcome to solve the expression given below
according to the QBASIC execution sequence.
(a) X = 7^2 + 2 * (7 * 9) + 9^2 (b) Y = (6 + 10)^2 – 5 * (2 + (3+1) / 2)

(c) Z = 16 / 8 – (60 – 10) / (20 + 5) (d) P = 2^2^2^2^2

(e) Q = 5 * 3^2^3 * 2^3^2 (f) R = -5*(10+2)+(5+(4+(2*3)– 2) * 10)

(g) X = 5^2 + 2*5*4 + 4^2 (h) Y= 5 * 3 + 5 * (7 – 5) – 2^2

(i) X = 9^2 – (2^5 – 2 * 5) (j) Y = 15 / 5 + (5^2 – 5 * 2)

Exercises

38. Write down the QBASIC operations given below in to
algebraic expressions.

(a) X^2 + 2 * X * Y + Y^2 (b) (A * (A + B))^(1/2)

(c) X / Y + (X^2 – X * Y) (d) P * Q – 5

(e) E * (F + G) (f) 5 * (-P)

(g) (1/2) * b * h (h) (a + b + c) / (a + b) (i) U * T + (G * T) / 2

(j) X / Y ^ 3

39. How do you compare string using relational
operators? Explain with example.

40. What is the convention for writing variables name that
stores single precision number and double precision
number in QBASIC? Give examples.

41. Distinguish between real number and integer number
with examples of where they are used.

Exercises

42. What is the convention for writing variables name that stores real
number and integer number in QBASIC? Give examples.

43. What do the following declarations represent?

i. salesvalue# ii. amount% iii. address$

iv. costprice! v. netamount&

44. What do you understand by Command and Statement?

45. In how many types Statement can be categorized? Explain one of
them.

46. Explain the following concepts in programming.
(a) Looping and Termination (b) Counter (c) Accumulator

(d) Branching or Jumping (e) Debugging (f) Flag

47. Explain the difference in the meaning of P = Q between algebra
and programming statement

48. Explain the difference between a counter and an accumulator
concept in programming.

Exercises

49. What can we achieve by devising a loop in a program?

50. What is the importance of writing nested structure in

programming?

51. What are the difference between the Assignment
Statement and the Declaration Statement? Explain
with examples.

52. How does QBASIC check the validity of the syntax of
commands and statements?

53. What is endless loop in programming? How do you
avoid it? Explain with an example.

54. What can we achieve by devising a loop in a program?

Exercises

55. Evaluate the following Boolean Expressions

Expression Evaluation (True/False)

7 > 3

11 >= 11

10 > 9

5 <= 6

4=14

56. Create two Boolean expressions and evaluate
them.

Boolean Expression Evaluation

1.

2.

Exercises

57. What would the output of the following program be?

IF 2 < 4 THEN

PRINT "Today is Wednesday"

ENDIF

58. What would the output of the following program be?

IF 25 <= 26 THEN

PRINT "Qbasic is fun!"

ENDIF

59. What would the output of the following program be?

IF 6 > 9 THEN

PRINT "Black and Gold Dance this Friday!"

ENDIF

Exercises

60. What would the output of the following program be?

number1% = 100

number2% = 97

IF number1% < number2% THEN

PRINT "Halloween is on Friday"

ENDIF

61. What would the output of the following program be?

IF "a" < "b" THEN

PRINT "Now we are testing strings."

ENDIF

62. What would the output of the following program be?

IF "hear" = "here" THEN

PRINT "These words sound the same"

ENDIF

63. What would the output of the following program be?

word1$ = "lasalle"

words2$ = "knights"

IF word1$ > word2$ THEN

PRINT "We are the Lasalle Black Knights!"

ENDIF

